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ABSTRACT: 
 Thedy [1] proved the result for prime right 

alternative and free of locally nilpotent-ideals. Kleinfeld 

[2] proved that if a prime alternative ring is not 

associative then its nucleus 𝑵 equals its center 𝑪. 

 In this paper we investigate the results of 

accessible ring. First we prove that if 𝑹 is semiprime and 

purely non-associative, then 𝑵 = 𝑪. Also we prove that 

middle nucleus=center of  𝑹 if 𝑹 is purely non-associative 

provided that either 𝑹 has no locally nilpotent ideals or 

𝑹 is semiprime and finitely generated by mod 𝑴. 
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Introduction: 

An accessible algebra 𝑅 of characteristic 2 is 

semiprime if there exist a non-zero ideal 𝐼 such that 

𝐼2 = (0). 

 In any non-associative algebra R, the 

commutator (𝑎, 𝑏) and associator (𝑎, 𝑏, 𝑐) are defined 

by 𝑎𝑏 − 𝑏𝑎 and (𝑎𝑏)𝑐 − 𝑎(𝑏𝑐).The algebra is said to 

be of characteristic2 if 2𝑎 = 0 implies 𝑎 = 0 for a 

belongs to 𝑅 and throughout this paper 𝑅 is assumed 

to be accessible ring of characteristic2. 

The right Nucleus 𝑀, the nucleus 𝑁 and the center 

𝐶 are defined by 

  𝑀 = {𝑚 ∈ 𝑅: (𝑅, 𝑅, 𝑚) = 0} 

  𝑁 = {𝑛 ∈ 𝑅: (𝑛, 𝑅, 𝑅) = 0} 

  𝐶 = {𝐶 ∈ 𝑁: (𝐶, 𝑁) = 0} 

In [3] Thedy was proved that  

  (𝑀, 𝑅)  ⊆ 𝑀 𝑎𝑛𝑑 (𝑀, 𝑅, 𝑅)  ⊆ 𝑀 

MAIN RESULTS: 

LEMMA 1: Suppose that 𝑚 ∈ 𝑀 and 𝑥, 𝑦, 𝑧 ∈ 𝑅 

then  

(𝑖) (x, y, zm) = (x, y, z)m , (mx, y, z) = m(x, y, z) 

 (ii)(xy, m) = x(y, m) + (x, m)y  

(iii)(x, y, z)(m, z) = 0 

 (iv) (x, y, z)(m, w, z) = 0 

   and (v) If (m, R) = 0 then 𝑚 = 𝐶. 

PROOF: 

(i) The Teichmular identity we have 

(𝑤𝑥, 𝑦, 𝑧) − (𝑤, 𝑥𝑦, 𝑧) + (𝑤, 𝑥, 𝑦𝑧) = 𝑤(𝑥, 𝑦, 𝑧) +

(𝑤, 𝑥, 𝑦)                    (1) 

Put 𝑤 = 𝑚 in (1) gives  

(𝑚𝑥, 𝑦, 𝑧) − (𝑚, 𝑥𝑦, 𝑧) + (𝑚, 𝑥, 𝑦𝑧)

= 𝑚(𝑥, 𝑦, 𝑧) + (𝑚, 𝑥, 𝑦) 

this implies (𝑚𝑥, 𝑦, 𝑧) = 𝑚(𝑥, 𝑦, 𝑧) 

Similarly we have  (𝑥, 𝑦, 𝑧𝑚) = (𝑥, 𝑦, 𝑧)𝑚   

(ii) The semi-Jacobi identity 

   (𝑥𝑦, 𝑧)  =  𝑥(𝑦, 𝑧)  + (𝑥, 𝑧)𝑦 + (𝑥, 𝑦, 𝑧)  +

 (𝑧, 𝑥, 𝑦) – (𝑥, 𝑦, 𝑧)        (2) 

   In accessible ring (2) becomes 

(𝑥𝑦, 𝑧)  =  𝑥(𝑦, 𝑧)  + (𝑥, 𝑧)𝑦  (3) 

Put  𝑧 =  𝑚 in (3) gives 

 (𝑥𝑦, 𝑚)  =  𝑥(𝑦, 𝑚) + (𝑥, 𝑚)𝑦. 

(iii)  (𝑧2, 𝑚)  =  𝑧(𝑧, 𝑚)  + (𝑧, 𝑚)𝑧   from(ii) 

         =  2z(z, m) – (z, (z, m)) 

Thus  z(z, m) ∈ M. 

And by part (i) (x, y, z)(m, z)  =  (x, y, z(m, z))  =  0. 

(iv)  (𝑥, 𝑦, 𝑧)(𝑚, 𝑤, 𝑧)  =  (𝑥, 𝑦, 𝑧(𝑚, 𝑤, 𝑧)) 

  =  (𝑥, 𝑦, (𝑚𝑧, 𝑤, 𝑧)) 

=  0. 

(V) From ((𝑧, 𝑥), 𝑦)  +  ((𝑥, 𝑦), 𝑧)  + ((𝑦, 𝑧), 𝑥)  =

 2(𝑥, 𝑦, 𝑧)  + 2(𝑦, 𝑧, 𝑥)  + 2(𝑧, 𝑥, 𝑦) 

 Put 𝑥 =  𝑚, in above equation gives 

(𝑚, 𝑦, 𝑧)  =  0. 

Hence all the results are proved. 

Let �̅� be the ring obtained by adjoining 1 to 𝑅 in the 

usual way. 

LEMMA 2: If n ∈ N, then the ideal of 𝑅 generated 

by (𝑅, 𝑛)  is  

𝑉𝑛 =  �̅�(𝑅, 𝑛)  =  (𝑅, 𝑛)�̅�.                                

PROOF: Here  �̅�(𝑅, 𝑛) is the set of all finite sums 

∑(𝑟𝑖 , 𝑛)  + ∑ 𝑠𝑗(𝑡𝑗 , 𝑛) . 

From Lemma (1(ii)) gives 

 (xy, n)  =  x(y, n)  + (x, n)y.  
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So that the two expressions for Vnare equal. 

Then, 

R . Vn  =  R. �̅�(R, n) =  �̅�(R, n)Vn 

Vn. R =  �̅�(R, n). R  R . VnVn.     

Hence Lemma proved.  

LEMMA 3: Let 𝑉 be the ideal of R generated by 

(𝑅, 𝑀) and let 

P =  {p ∈  R ∶  pv =  0}   then 

(i) V =  �̅�(R, M)  =  (R, M)�̅� 

(ii) If p(M, R)  =  0 then p ∈  P. 

(iii) P is an ideal of R. 

PROOF: The identity 

𝑥(𝑦, 𝑚)  =  (𝑥, 𝑚′)  + (𝑦, 𝑚)𝑥 for    m′ =

 (y, m) M.  

 and it proves �̅�(𝑅, 𝑀)  =  (𝑅, 𝑀)�̅�. 

clearly, �̅�(𝑅, 𝑀) is a left ideal, and    

�̅�(𝑅, 𝑀) . 𝑅 ⊆ �̅��̅�(𝑅, 𝑀)  = �̅�(𝑅, 𝑀). 

Which shows that it is two -sided. 

(ii) If p(M, R) = 0, and then 𝑝𝑉 = 𝑝(𝑀, 𝑅) �̅� = 0  

(iii) If pP and rR, then  

pr. (M, R) ⊆ pV = 0  

and 𝑟𝑝. (𝑀, 𝑅)  =  0  

Therefore p is an ideal of R. 

LEMMA 4: Suppose that 𝑅 is semiprime and purely 

non-associative, then for all 𝑚, 𝑛 ∈ 𝑀 and x, y ∈  R 

we have  

(𝑖) (𝑚, 𝑛)2 = 0  

(𝑖𝑖) (𝑚, 𝑛) = 0  

(𝑖𝑖𝑖) (𝑥, 𝑛)(𝑥, 𝑚)  =  0  

(𝑖𝑣) (𝑥, 𝑚)(𝑦, 𝑚)  =  0  

PROOF: 

We set W = {r ∈  m / r R ⊆  m} and P = {p ∈

R /pW = 0}  

In [4] it was shown that 𝑃 and 𝑊 are ideals of 𝑅 with 

(𝑅, 𝑅, 𝑅) ⊆   𝑃.  

For the accessible ring we have  (𝑅, 𝑅, 𝑅)  ⊆  𝑃  

Now (𝑃 ∩ 𝑊)2 ⊆ 𝑃𝑊 = 0. 

and semi primeness give 𝑃  𝑊 = 0  

Since (𝑊, 𝑅, 𝑅) ⊆ P 𝑊 we find 𝑊 ⊆  𝑁 

Hence by pure non-associativity W=0  

Now for (𝑚, 𝑥)2 ∈  𝑊  and (𝑀, 𝑀) ⊆  𝑊. 

Thus we have (i) & (ii).  

(iii) Linearizing (i) on 𝑚, we have  

(𝑚, 𝑥)(𝑛, 𝑥)  + (𝑛, 𝑥)(𝑚, 𝑥)  =  0  

Since 𝑀 is commutative by (ii),  

This gives 2(𝑚, 𝑥)(𝑛, 𝑥)  =  0  

For characteristic  2 which implies (𝑚, 𝑥)(𝑛, 𝑥)  =

 0.  

(iv) Linearize (i) on 𝑥 ,we have  

(𝑚, 𝑥)(𝑚, 𝑦)  + (𝑚, 𝑦)(𝑚, 𝑥)  =  0  

Since 𝑀 is commutative by (ii)  

Thus gives 2(𝑚, 𝑥)(𝑚, 𝑦) = 0  

For characteristic  2, (𝑚, 𝑥)(𝑚, 𝑦)  =  0. 

THEOREM 1: Suppose that 𝑅 is semiprime and 

purely non-associative then 𝑁 = 𝐶. 

PROOF: Given n ∈ N, let Vn be as in Lemma (2).  

Then 𝑉𝑛
2  =  

_

R (𝑅, 𝑛) . (𝑅, 𝑛)
_

R  

                 =  
_

R (𝑅, 𝑛)2
_

R  

                 =  0 ( By Lemma ( 4 (iv)))  

By semiprimeness 𝑉𝑛 = 0, whence 𝑛 ∈ 𝐶. 

Thus 𝑁 ⊂ 𝐶, 𝑠𝑜 𝑁 = 𝐶. 

COROLLARY 1: Suppose that 𝑅 is prime but non-

associtative then 𝑁 = 𝐶. 

PROOF: It is sufficient to show that 𝑅 is purely non-

associative. 

Let 𝐼 be an ideal in the Nucleus. 

Then (𝑅, 𝑅, 𝑅)𝐼 = (𝑅, 𝑅, 𝑅𝐼) ⊆ (𝑅, 𝑅, 𝐼) = 0     

Thus if 𝐴 = �̅�(𝑅, 𝑅, 𝑅) is the associtative ideal of 𝑅, 

then 𝐴𝐼 = (0), 

But 𝑅 is non-associative and prime, so 𝐼 = (0). 

LEMMA 5: If 𝑚 ∈ 𝑀 and 𝑚(𝑀, 𝑅) = 0 then , 𝑚 ∈

𝐶. 

If further 𝑚2 = 0 then 𝑚 = 0. 

PROOF: Let 𝑃 = {𝑝 ∈ 𝑅| 𝑝𝑉 = 0}. 

Then 𝑚 ∈  𝑃  (By lemma  3(ii)). 

So (𝑚, 𝑅)  ⊆ 𝑝  𝑉. 

Since 𝑝𝑉 = 0 then by lemma (4) that (𝑚, 𝑅) = 0. 

So 𝑚 ∈  𝐶 (By lemma 1(V)). 

Hence the ideal generated by 𝑚 is �̅�𝑚. 

If 𝑚2 = 0 then (�̅�𝑚)2 = 0. 

By semiprimeness �̅�𝑚 = 0 and 𝑚 = 0. 

For a given finite list 𝐴 = {𝑎1, 𝑎2, . . . . , 𝑎𝑘} 

of elements of 𝑅, define 𝑇(𝐴) =

(𝑀, 𝑎1)(𝑀, 𝑎2). . . . (𝑀, 𝑎𝑘) that is 

{(𝑚1, 𝑎1)(𝑚2, 𝑎2). . . . (𝑚𝑘, 𝑎𝑘)}: 𝑚𝑖 ∈ 𝑀 }. 

 Note that 𝑇(𝐴)  ⊆ 𝑀. Also, by lemma 

(4(ii)), 𝑇(𝐴) does not depend on the order of the 𝑎𝑖 , 

and by lemma (4(iii)) it is 0 If 𝐴 has any repetitions. 

For the same reason if 𝑡 ∈ 𝑇(𝐴) then 𝑡2 = 0. 

We allow the empty list 𝐴 = ∅, defining 

𝑇(∅) = 1(the unit element of �̅� ). It may be checked 

that (𝑀, 𝑎)𝑇(𝐴) = 𝑇{𝐴 ∪ {𝑎}} in all cases including 

𝐴 = ∅ . 

Next define 𝐿(𝐴) = {𝑤 ∈  𝑅: (𝑤, 𝑀)𝑇(𝐴) = 0}. 
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In particular, 𝐿(∅) = {𝑤 ∈ 𝑅: ( 𝑤 , 𝑀) = 0}. 

LEMMA  6: (i) If 𝑏 ∈ 𝐿(𝐴) then (𝑀, 𝑏, 𝑅)𝑇(𝐴) = 0. 

       (ii) 𝐿(𝐴) is subring of  𝑅. 

PROOF:  (i) we have 

           0 =  (𝑀, 𝑅, 𝑅)(𝑏, 𝑀)𝑇 

  =  (𝑀, 𝑏, 𝑅)(𝑅, 𝑀)𝑇      ( by lemma 1(iii)) 

  =  (𝑀, 𝑏, 𝑅)𝑇(𝑅, 𝑀)       ( by lemma 4(ii)) 

  =  (𝑀, 𝑏, 𝑅)(𝑅, 𝑀)          ( by lemma 1(i)) 

If 𝑧 ∈ (𝑀, 𝑏, 𝑅𝑇) Then 𝑧(𝑅, 𝑀) = 0. 

Also 𝑧 is of the form (𝑚, 𝑏, 𝑟), so that 𝑧2 =  0 ( by 

Lemma 1 (iv)) 

Hence 𝑧 =  0 (by Lemma 5) 

  i.e. 0 =  (𝑀, 𝑏, 𝑅𝑇)  =  (𝑀, 𝑏, 𝑅)𝑇 .    

(ii) Suppose that 𝑥, 𝑦 ∈  𝐿(𝐴) and 𝑚 ∈ 𝑀 

      Then  

 (𝑥𝑦, 𝑚)  =  𝑥(𝑦, 𝑚)  + (𝑥, 𝑚)𝑦  (by Lemma 1(ii)) 

=  𝑥(𝑦, 𝑚)  + (𝑚′, 𝑦)  +  𝑦(𝑥, 𝑚) 

         Where 𝑚′ =  (𝑥, 𝑚)  ∈ 𝑀 

Since 𝑇 ⊆ 𝑀 we now have 

(𝑥𝑦, 𝑚)𝑇 ⊆  𝑥(𝑦, 𝑚)𝑇 + (𝑚′, 𝑦)𝑇 +  𝑦(𝑥, 𝑚)𝑇 

 The R.H.S of above is 0 by assumption. 

Since 𝑚 ∈ 𝑀 was arbitrary this shows that 

(𝑥𝑦, 𝑀)𝑇 =  0, so that 𝑥𝑦 ∈ 𝐿.  

Let us say that 𝑅 is finitely generated 𝑚𝑜𝑑 𝑀 of there 

is a finite subset 𝐴 of 𝑅 such that the subring of 𝑅 

generated by 𝑀 ∪ 𝐴 is all of 𝑅. 

THEOREM 2: Suppose that 𝑅 is semiprime purely 

non-associative and is finitely generated by 𝑚𝑜𝑑 𝑀 

then 𝑀 =  𝐶.  

PROOF: Suppose that 𝑅 is generated by 𝑀 ∪ 𝐴.  

Where 𝐴 =  {𝑎1, 𝑎2 , … . , 𝑎𝑘}, we will show that if 𝑆 

is any list of terms from 𝐴 then 𝐿(𝑠)  =  𝑅 and 

provided that 𝑆 ≠ ∅, 𝑇(𝑠)  =  0.  

We prove this by reverse induction on the length 𝑟 =

 |𝑠| of 𝑆. 

If |𝑠|  =  𝑘 + 1 then 𝑆 has a repetition, so that 

𝑇(𝑠)  =  0, 

Hence clearly 𝐿(𝑠)  =  𝑅. 

Suppose we have both results for lists of length 𝑟 +

1, and 𝑆 is a list of length 𝑟. Then for 𝑎 ∈ 𝐴 we have 

(𝑎, 𝑀)𝑇(𝑠)  =  𝑇(𝑠′),  

Where 𝑠′ =  𝑠 ∪ {𝑎} has length 𝑟 + 1.  

Thus (𝑎, 𝑀)𝑇(𝑠)  =  0.So that  ∈ 𝐿(𝑠) .  

Hence 𝐴 ⊆ 𝐿(𝑠), as (𝑀, 𝑀)  =  0 ( By lemma 4(ii) ).  

We also have 𝑀 ⊆ 𝐿(𝑠). 

Thus by lemma (6(ii)), 𝐿(𝑠) is a subring of 

𝑅 contained 𝐴 ∪ 𝑀,  

i.e 𝐿(𝑠)  =  𝑅. 

Next suppose that 𝑆 ≠ ∅, and 𝑡 ∈ 𝑇(𝑠). 

Since 𝐿(𝑆) = 𝑅, we have (𝑅, 𝑀)𝑇(𝑠) = 0. 

So that 𝑡(𝑅, 𝑀) = 0. 

Also we seen that 𝑡2  = 0. 

So by Lemma (5) we have 𝑡 = 0.  

i.e., 𝑇(𝑠) = 0 

Finally the result 𝐿(∅) = 𝑅 gives (𝑅, 𝑀) = 0. 

Hence 𝑀 = 𝐶 by Lemma ( 1(V)). 

THEOREM 3: Suppose that 𝑅 is purely non-

associative and free of locally nilpotent ideals. Then 

𝑀 = 𝐶. 

PROOF:  By lemma (4(ii)), 𝑀 is commutative. 

If we let 𝐼 be the nil radical of 𝑀, 

Then from [1], 𝐼 + 𝐼𝑅 is locally nilpotent ideal of R 

such that  (𝑀, 𝑅, 𝑅)(𝑀, 𝑅) ⊆ 𝐼. 

Since R is free of locally nilpotent ideals (𝑀, 𝑅, 𝑅) =

0 and (𝑀, 𝑅) = 0. 

Hence 𝑀 = 𝐶 by Lemma 1(v). 
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